1,876 research outputs found

    Transitions in parenting among Somali refugee and immigrant families : acculturation in the U.S. and the preservation of traditional culture and values : a project based upon an independent investigation

    Get PDF
    This qualitative study explores the changing experience of family life, acculturation, and preservation of traditional collectivist culture among Somali refugee and immigrant parents raising children in the United States. Resettlement in the U.S. forced many Somali refugees to transition to a new individualistic culture of family values markedly different from their own. Nine Somali refugee and immigrant mothers and fathers residing in Connecticut and western Massachusetts participated in the research. They answered open-ended interview questions focusing on the following topics: 1) Somali parenting styles and values, 2) the preservation of Somali language, identity, and Islam, 3) changes in family systems, regarding gender roles and extended family and 4) familial conflict resolution. The findings demonstrated that the greatest challenges to parenting centered on loneliness, social isolation, and lack of support from extended family and neighbors. All participants focused on children\u27s lack of respect for elders and diminishing parental authority as fundamental differences between American and Somali values. Most regretted their limitations in passing along Somali language and Islamic study. The findings also showed that many participants transitioned to a new acceptance of their children\u27s autonomy and identity as American, thereby meaningfully integrating American and Somali values. Many affirmed that a traditional Somali council of elders functioned in their current community as a model for familial conflict mediation more familiar than therapy. These findings help build cultural competency and trust by informing social workers, educators, and other service providers of the strengths and challenges that Somali refugee and immigrant families may face in the process of acculturation

    Transcriptional regulation of mouse alpha A-crystallin gene in a 148kb Cryaa BAC and its derivates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>αA-crystallin is highly expressed in the embryonic, neonatal and adult mouse lens. Previously, we identified two novel distal control regions, DCR1 and DCR3. DCR1 was required for transgenic expression of enhanced green fluorescent protein, EGFP, in lens epithelium, whereas DCR3 was active during "late" stages of lens primary fiber cell differentiation. However, the onset of transgenic EGFP expression was delayed by 12–24 hours, compared to the expression of the endogenous <it>Cryaa </it>gene.</p> <p>Results</p> <p>Here, we used bacterial artificial chromosome (BAC) and standard transgenic approaches to examine temporal and spatial regulation of the mouse <it>Cryaa </it>gene. Two BAC transgenes, with EGFP insertions into the third coding exon of <it>Cryaa </it>gene, were created: the intact α<it>A-crystallin </it>148 kb BAC (αA-BAC) and αA-BAC(ΔDCR3), which lacks approximately 1.0 kb of genomic DNA including DCR3. Expression of EGFP in the majority of both BAC transgenics nearly recapitulated the endogenous expression pattern of the <it>Cryaa </it>gene in lens, but not outside of the lens. The number of cells expressing αA-crystallin in the lens pit was higher compared to the number of cells expressing EGFP. Next, we generated additional lines using a 15 kb fragment of α<it>A-crystallin </it>locus derived from αA-BAC(ΔDCR3), 15 kb <it>Cryaa/EGFP</it>. A 15 kb region of <it>Cryaa/EGFP </it>supported the expression pattern of EGFP also in the lens pit. However, co-localization studies of αA-crystallin and EGFP indicated that the number of cells that showed transgenic expression was higher compared to cells expressing αA-crystallin in the lens pit.</p> <p>Conclusion</p> <p>We conclude that a 148 kb αA-BAC likely contains all of the regulatory regions required for αA-crystallin expression in the lens, but not in retina, spleen and thymus. In addition, while the 15 kb <it>Cryaa/EGFP </it>region also supported the expression of EGFP in the lens pit, expression in regions such as the hindbrain, indicate that additional genomic regions may play modulatory functions in regulating extralenticular αA-crystallin expression. Finally, deletion of DCR3 in either αA-BAC(ΔDCR3) or <it>Cryaa </it>(15 kb) transgenic mice result in EGFP expression patterns that are consistent with DCR's previously established role as a distal enhancer active in "late" primary lens fiber cells.</p

    Pax6 interactions with chromatin and identification of its novel direct target genes in lens and forebrain.

    Get PDF
    Pax6 encodes a specific DNA-binding transcription factor that regulates the development of multiple organs, including the eye, brain and pancreas. Previous studies have shown that Pax6 regulates the entire process of ocular lens development. In the developing forebrain, Pax6 is expressed in ventricular zone precursor cells and in specific populations of neurons; absence of Pax6 results in disrupted cell proliferation and cell fate specification in telencephalon. In the pancreas, Pax6 is essential for the differentiation of α-, β- and δ-islet cells. To elucidate molecular roles of Pax6, chromatin immunoprecipitation experiments combined with high-density oligonucleotide array hybridizations (ChIP-chip) were performed using three distinct sources of chromatin (lens, forebrain and β-cells). ChIP-chip studies, performed as biological triplicates, identified a total of 5,260 promoters occupied by Pax6. 1,001 (133) of these promoter regions were shared between at least two (three) distinct chromatin sources, respectively. In lens chromatin, 2,335 promoters were bound by Pax6. RNA expression profiling from Pax6⁺/⁻ lenses combined with in vivo Pax6-binding data yielded 76 putative Pax6-direct targets, including the Gaa, Isl1, Kif1b, Mtmr2, Pcsk1n, and Snca genes. RNA and ChIP data were validated for all these genes. In lens cells, reporter assays established Kib1b and Snca as Pax6 activated and repressed genes, respectively. In situ hybridization revealed reduced expression of these genes in E14 cerebral cortex. Moreover, we examined differentially expressed transcripts between E9.5 wild type and Pax6⁻/⁻ lens placodes that suggested Efnb2, Fat4, Has2, Nav1, and Trpm3 as novel Pax6-direct targets. Collectively, the present studies, through the identification of Pax6-direct target genes, provide novel insights into the molecular mechanisms of Pax6 gene control during mouse embryonic development. In addition, the present data demonstrate that Pax6 interacts preferentially with promoter regions in a tissue-specific fashion. Nevertheless, nearly 20% of the regions identified are accessible to Pax6 in multiple tissues

    Rybp, a polycomb complex-associated protein, is required for mouse eye development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rybp (Ring1 and YY1 binding protein) is a zinc finger protein which interacts with the members of the mammalian polycomb complexes. Previously we have shown that Rybp is critical for early embryogenesis and that haploinsufficiency of <it>Rybp </it>in a subset of embryos causes failure of neural tube closure. Here we investigated the requirement for <it>Rybp </it>in ocular development using four <it>in vivo </it>mouse models which resulted in either the ablation or overexpression of <it>Rybp</it>.</p> <p>Results</p> <p>Our results demonstrate that loss of a single <it>Rybp </it>allele in conventional knockout mice often resulted in retinal coloboma, an incomplete closure of the optic fissure, characterized by perturbed localization of <it>Pax6 </it>but not of <it>Pax2</it>. In addition, about one half of <it>Rybp-/- <-> Rybp+/+ </it>chimeric embryos also developed retinal colobomas and malformed lenses. Tissue-specific transgenic overexpression of <it>Rybp </it>in the lens resulted in abnormal fiber cell differentiation and severe lens opacification with increased levels of <it>AP-2α </it>and <it>Sox2</it>, and reduced levels of <it>βA4-crystallin </it>gene expression. Ubiquitous transgenic overexpression of <it>Rybp </it>in the entire eye caused abnormal retinal folds, corneal neovascularization, and lens opacification. Additional changes included defects in anterior eye development.</p> <p>Conclusion</p> <p>These studies establish <it>Rybp </it>as a novel gene that has been associated with coloboma. Other genes linked to coloboma encode various classes of transcription factors such as <it>BCOR</it>, <it>CBP</it>, <it>Chx10</it>, <it>Pax2</it>, <it>Pax6</it>, <it>Six3</it>, <it>Ski</it>, <it>Vax1 </it>and <it>Vax2</it>. We propose that the multiple functions for <it>Rybp </it>in regulating mouse retinal and lens development are mediated by genetic, epigenetic and physical interactions between these genes and proteins.</p

    Palm is expressed in both developing and adult mouse lens and retina

    Get PDF
    BACKGROUND: Paralemmin (Palm) is a prenyl-palmitoyl anchored membrane protein that can drive membrane and process formation in neurons. Earlier studies have shown brain preferred Palm expression, although this protein is a major water insoluble protein in chicken lens fiber cells and the Palm gene may be regulated by Pax6. METHODS: The expression profile of Palm protein in the embryonic, newborn and adult mouse eye as well as dissociated retinal neurons was determined by confocal immunofluorescence. The relative mRNA levels of Palm, Palmdelphin (PalmD) and paralemmin2 (Palm2) in the lens and retina were determined by real time rt-PCR. RESULTS: In the lens, Palm is already expressed at 9.5 dpc in the lens placode, and this expression is maintained in the lens vesicle throughout the formation of the adult lens. Palm is largely absent from the optic vesicle but is detectable at 10.5 dpc in the optic cup. In the developing retina, Palm expression transiently upregulates during the formation of optic nerve as well as in the formation of both the inner and outer plexiform layers. In short term dissociated chick retinal cultures, Palm protein is easily detectable, but the levels appear to reduce sharply as the cultures age. Palm mRNA was found at much higher levels relative to Palm2 or PalmD in both the retina and lens. CONCLUSION: Palm is the major paralemmin family member expressed in the retina and lens and its expression in the retina transiently upregulates during active neurite outgrowth. The expression pattern of Palm in the eye is consistent with it being a Pax6 responsive gene. Since Palm is known to be able to drive membrane formation in brain neurons, it is possible that this molecule is crucial for the increase in membrane formation during lens fiber cell differentiation

    Patients' use of a home-based virtual reality system to provide rehabilitation of the upper limb following stroke

    Get PDF
    Background: A low cost, virtual reality system that translates movements of the hand, fingers and thumb into game play was designed to provide a flexible and motivating approach to increasing adherence to home based rehabilitation. Objective: Effectiveness depends on adherence, so did patients use the intervention to the recommended level. If not, what reasons did they give? Design: Prospective cohort study plus qualitative analysis of interviews. Methods: 17 patients recovering from stroke recruited to the intervention arm of a feasibility trial had the equipment left in their homes for eight weeks and were advised to use it three times a day for periods of no more than 20 minutes. Frequency and duration of use were automatically recorded. At the end of the intervention, participants were interviewed to determine barriers to using it in the recommended way. Results: Duration of use and how many days they used the equipment are presented for the 13 participants who successfully started the intervention. These figures were highly variable and could fall far short of our recommendations. There was a weak (p=0.053) positive correlation between duration and baseline reported activities of daily living. Participants reported familiarity with technology and competing commitments as barriers to use although appreciated the flexibility of the intervention and found it motivating

    Effect of pulsed delivery and bouillon base on saltiness and bitterness perceptions of salt delivery profiles partially substituted with KCl

    Get PDF
    Reducing salt levels in processed food is an important target for a growing numbers of food manufacturers. The effects of pulsed delivery (Dynataste) and bouillon base on saltiness and bitterness perception of partially substituted solutions (KCl) were investigated. Pulsed delivery did not enhance salt perception and resulted in greater Overall Bitterness Scores for the same level of substitution with KCl. The presence of the bouillon base masked to a certain extent the loss of saltiness induced by the substitution and resulted in lower Overall Bitterness Scores of the substituted profiles

    Germline Mutation in NLRP2 (NALP2) in a Familial Imprinting Disorder (Beckwith-Wiedemann Syndrome)

    Get PDF
    Beckwith-Wiedemann syndrome (BWS) is a fetal overgrowth and human imprinting disorder resulting from the deregulation of a number of genes, including IGF2 and CDKN1C, in the imprinted gene cluster on chromosome 11p15.5. Most cases are sporadic and result from epimutations at either of the two 11p15.5 imprinting centres (IC1 and IC2). However, rare familial cases may be associated with germline 11p15.5 deletions causing abnormal imprinting in cis. We report a family with BWS and an IC2 epimutation in which affected siblings had inherited different parental 11p15.5 alleles excluding an in cis mechanism. Using a positional-candidate gene approach, we found that the mother was homozygous for a frameshift mutation in exon 6 of NLRP2. While germline mutations in NLRP7 have previously been associated with familial hydatidiform mole, this is the first description of NLRP2 mutation in human disease and the first report of a trans mechanism for disordered imprinting in BWS. These observations are consistent with the hypothesis that NLRP2 has a previously unrecognised role in establishing or maintaining genomic imprinting in humans
    corecore